

RWR 2C (RAL9010)

- Swirl ceiling diffusers
- **_** Circular
- _ Steel
- _ White, RAL 9010

Circular swirl ceiling diffusers with clip mounting type RWR 2C (RAL9010)

Round swirl ceiling diffusers with flat frame and fixed blades, mounted by clips

Application

• For air supply and exhaust in ventilation and air conditioning systems.

Material

Steel

Colour

■ White, RAL 9016

Composition

- Fixed blades
- Clip mounting

Mounting

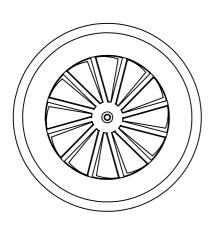
Fixing directly on the collar without plenum box

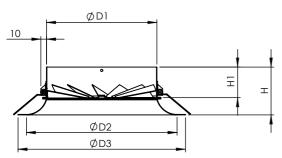
Text for tender

- The air supply diffusers are of the swirl type with a flat frame and clip mounting.
 They are made of steel with white powder coating RAL 9010.
- Cairox type RWR-2C

Order example

RWR-2C, 200


Explanation


RWR-2C = Diffuser with clip mounting type

200 = Neck size of diffuser

Ceiling diffusers and grilles

Dimensions										
RWR-2C	ØD1 [mm]	ØD2 [mm]	ØD3 [mm]	H [mm]	H1 [mm]	#Blades				
100	98	154	170	74	45	10				
125	123	195	225	86	55	10				
160	158	220	250	86	55	10				
200	198	270	300	86	55	10				

Quick selection															
RWR-2C			100			125		160			200				
Ak		0.0056		0.0086		0.0141		0.0224							
Q		В		1.2	2.4	3.6	1.2	2.4	3.6	1.2	2.4	3.6	1.2	2.4	3.6
40		H=	2.7	0.51	0.25	0.15	0.28	0.13	0.07						
	Vz	H=	3.2	0.28	0.16	0.1	0.14	0.08	0.05						
		H=	3.8	0.16	0.1	0.07	0.08	0.05	0.03						
		Vk			2			1.3							
		X0,25		2.1		1.6									
		Ps		24		10									
		Lw(A)			25			<20							
		H=	2.7	0.77	0.38	0.22	0.4	0.18	0.1	0.31	0.14	0.08			
	Vz	H=	3.2	0.42	0.24	0.16	0.21	0.11	0.07	0.16	0.09	0.05			
		H=	3.8	0.24	0.16	0.11	0.11	0.07	0.05	0.09	0.05	0.04			
60		Vk			3			1.9			1.2				
		X0,25			2.6			1.8			1.7				
		Ps			54			21			6				
		Lw(A)			38			22			<20				
100		H=	2.7				0.68	0.31	0.17	0.52	0.24	0.13	0.39	0.17	0.09
	Vz	H=	3.2				0.35	0.19	0.12	0.26	0.14	0.09	0.19	0.1	0.06
		H=	3.8				0.19	0.12	0.08	0.14	0.09	0.06	0.1	0.06	0.04
		Vk						3.2			2			1.2	
		X0,25						2.3			2			1.8	
		Ps						59			17			5	
		Lw(A)						38			30			<20	
		H=	2.7							0.78	0.35	0.2	0.61	0.27	0.15
	Vz	H=	3.2							0.4	0.21	0.13	0.31	0.16	0.1
		H=	3.8							0.21	0.13	0.09	0.16	0.1	0.07
150	_	Vk									3			1.9	
	_	X0,25						2.4			2.2				
	Ps										37			13	
		Lw(A) H=	2.7								43		0.81	25 0.36	0.2
200	Vz	H=	3.2										0.61	0.36	0.13
	VZ	H=	3.8										0.4	0.22	0.09
		Vk	3.0										0.22	2.5	0.05
		X0,25												2.3	
		Ps												23	
		Lw(A)												33	
250		H=	2.7										1	0.45	0.24
	Vz	H=	3.2										0.5	0.43	0.16
		H=	3.8										0.27	0.16	0.11
		Vk											0.27	3.1	0.11
		X0,25												2.7	
		Ps												35	
		Lw(A)												40	
	•												-		

Ceiling diffusers and grilles

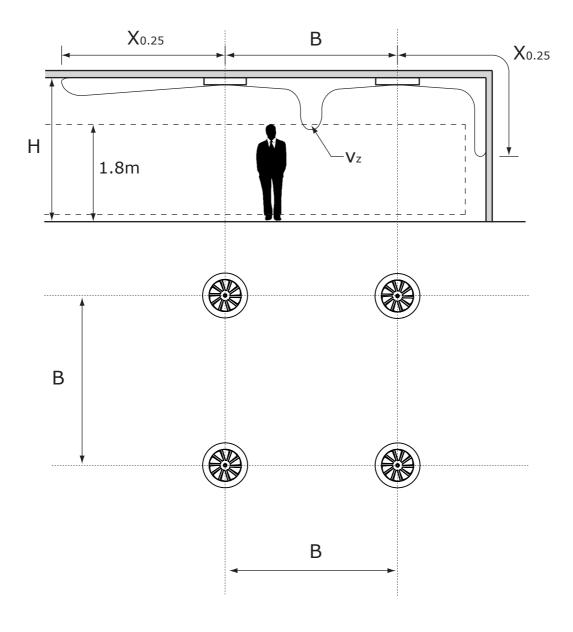
Symbols and specifications

- Q = Air volume in m³/h
- Ak = Effective surface (free area) in m²
- B = Distance between the diffusers in m
- H = Installation height of the diffusers in m
- Vz = Maximum velocity at the occupied zone according to distance between the diffusers and installation height in m/s
 Vk = Average effective velocity through the diffuser in m/s
 X0.25 = Throw length in m at an end velocity Vt of 0,25m/s

- Ps = Static pressure loss given in Pa
- Lw(A) = Acoustic power in dB(A)
- The throw X0.25 is given at an end velocity of 0.25m/s for a smooth ceiling without any obstacles.
 The values are given for isothermal supply air. Throw distances for cooling conditions at -11K can be calculated by dividing the X0.25 values with factor 1.1. For heating purposes at Dt of +11K a multiplier of 1.1 should be applied to the given X0.25 value.
- In order to achieve a high comfort level, selections can be made according to the maximal velocity at the occupied zone Vz. These values are given at distances between diffusers B and installation heights H. Velocities Vz lower than, or equal
- to 0,25m/s at the occupied zone are advised.

 The pressure losses Ps are given for diffusers without damper of with fully opened damper.

 The acoustic power values Lw(A) are given for diffusers without damper of with fully opened damper without room attenuation. Acoustic powers below 20dB(A) are mentioned as "<20" in the tables.
- For all special requirements, please contact our engineering office.


Symbols and specifications

See introduction pages

Ceiling diffusers and grilles

Placement instruction

